45 research outputs found

    Cross-layer QoS Analysis of Opportunistic OFDM-TDMA and OFDMA Networks

    Full text link

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Design and Performance Analysis of Multirate Multicarrier Systems for Dynamic Spectrum Access

    No full text

    Energy-Efficient Power Allocation and User Association in Heterogeneous Networks with Deep Reinforcement Learning

    No full text
    This paper studies the problem of joint power allocation and user association in wireless heterogeneous networks (HetNets) with a deep reinforcement learning (DRL)-based approach. This is a challenging problem since the action space is hybrid, consisting of continuous actions (power allocation) and discrete actions (device association). Instead of quantizing the continuous space (i.e., possible values of powers) into a set of discrete alternatives and applying traditional deep reinforcement approaches such as deep Q learning, we propose working on the hybrid space directly by using the novel parameterized deep Q-network (P-DQN) to update the learning policy and maximize the average cumulative reward. Furthermore, we incorporate the constraints of limited wireless backhaul capacity and the quality-of-service (QoS) of each user equipment (UE) into the learning process. Simulation results show that the proposed P-DQN outperforms the traditional approaches, such as the DQN and distance-based association, in terms of energy efficiency while satisfying the QoS and backhaul capacity constraints. The improvement in the energy efficiency of the proposed P-DQN on average may reach 77.6% and 140.6% over the traditional DQN and distance-based association approaches, respectively, in a HetNet with three SBS and five UEs

    Mode Selection and Spectrum Allocation in Coexisting D2D and Cellular Networks with Cooperative Precoding

    No full text
    In this paper, we investigate the mode selection strategies for a new device-to-device (D2D) pair becoming active in a network with a number of existing D2D sensors or users coexisting with cellular users in a D2D-enabled heterogeneous network. Specifically, we propose two selection rules, the signal-to-interference-plus-noise-ratio (SINR)-based and the capacity-based, combined with two sets of different precoding schemes and discuss their impacts on the system under a variety of scenarios. While the cooperative block diagonalization (BD) among the cellular users combined with the zero-forcing (ZF) precoding among D2D users can eliminate interference observed at the new D2D receiving sensor, the maximum signal-to-leakage-and-noise-ratio (SLNR) precoding is often a preferred option due to low-complexity implementations and comparable performance. We note that the two selection rules, the SINR-based and the capacity-based, considered in this paper impact on the system differently, with interesting tradeoff from different perspectives. Finally, we provide insights by simulations into the best selection among the three modes depending on a variety of use cases in the network
    corecore